Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain
نویسندگان
چکیده
We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.
منابع مشابه
An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملDiagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملAutomated segmentation of neuroanatomical structures in multispectral MR microscopy of the mouse brain.
We present the automated segmentation of magnetic resonance microscopy (MRM) images of the C57BL/6J mouse brain into 21 neuroanatomical structures, including the ventricular system, corpus callosum, hippocampus, caudate putamen, inferior colliculus, internal capsule, globus pallidus, and substantia nigra. The segmentation algorithm operates on multispectral, three-dimensional (3D) MR data acqui...
متن کاملA Digital Brain Atlas for Surgical Planning, Model-Driven Segmentation, and Teaching
We developed a three-dimensional (3D) digitized atlas of the human brain to visualize spatially complex structures. It was designed for use with magnetic resonance (MR) imaging data sets. Thus far, we have used this atlas for surgical planning, model-driven segmentation, and teaching. We used a combination of automated and supervised segmentation methods to define regions of interest based on n...
متن کاملPattern classification of hippocampal shape analysis in a study of Alzheimer’s Disease
Center for Imaging Science http://cis.jhu.edu [1] B. Fischl, et.al., Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain, Neuron, 33:341, 2005. [2] M.F. Beg, et.al., Computing Large Deformation Metric Mapping via Geodesic Flows of Diffeomorphisms, Int. J. Comp Vis, 61:139, 2005. [3] Venables, W.N. and Ripley, B.D., Modern applied statistics with S, S. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 33 شماره
صفحات -
تاریخ انتشار 2002